LwFTP/Core/Src/main.c

959 lines
27 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "fatfs.h"
#include "lwip.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
#include "lwip/api.h"
#include "lwftpc.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
FDCAN_HandleTypeDef hfdcan1;
FDCAN_HandleTypeDef hfdcan2;
FDCAN_HandleTypeDef hfdcan3;
SD_HandleTypeDef hsd1;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart4;
UART_HandleTypeDef huart7;
UART_HandleTypeDef huart8;
DMA_HandleTypeDef hdma_uart8_rx;
MDMA_HandleTypeDef hmdma_mdma_channel0_sdmmc1_end_data_0;
osThreadId defaultTaskHandle;
uint32_t defaultTaskBuffer[ 4096 ];
osStaticThreadDef_t defaultTaskControlBlock;
osThreadId debugTaskHandle;
uint32_t debugTaskBuffer[ 2048 ];
osStaticThreadDef_t debugTaskControlBlock;
/* USER CODE BEGIN PV */
#define FTPSemaphore 0
static lwftp_session_t s;
sys_sem_t ftpsem;
uint8_t CLI_IP[4] = { 192, 168, 0, 120 }; // client addr
uint8_t SVR_IP[4] = { 192, 168, 0, 100 }; // server addr
u16_t SVR_PORT = 21;
char *USER = "anonymous";
char *PASS = "email@example.com";
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_MDMA_Init(void);
static void MX_FDCAN3_Init(void);
static void MX_SDMMC1_SD_Init(void);
static void MX_TIM3_Init(void);
static void MX_UART4_Init(void);
static void MX_UART7_Init(void);
static void MX_FDCAN1_Init(void);
static void MX_FDCAN2_Init(void);
static void MX_UART8_Init(void);
void StartDefaultTask(void const * argument);
void StartDebugTask(void const * argument);
/* USER CODE BEGIN PFP */
// Function to send the data to the server
void lwftp_init(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int _write(int32_t file, uint8_t *ptr, int32_t len) {
for (int32_t i = 0; i < len; ++i)
ITM_SendChar(*ptr++);
return len;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MPU Configuration--------------------------------------------------------*/
MPU_Config();
/* Enable the CPU Cache */
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_MDMA_Init();
MX_FDCAN3_Init();
MX_SDMMC1_SD_Init();
MX_TIM3_Init();
MX_UART4_Init();
MX_UART7_Init();
MX_FDCAN1_Init();
MX_FDCAN2_Init();
MX_FATFS_Init();
MX_UART8_Init();
/* USER CODE BEGIN 2 */
#define RTOS_MODE 1
#if RTOS_MODE
/* USER CODE END 2 */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadStaticDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 4096, defaultTaskBuffer, &defaultTaskControlBlock);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of debugTask */
osThreadStaticDef(debugTask, StartDebugTask, osPriorityNormal, 0, 2048, debugTaskBuffer, &debugTaskControlBlock);
debugTaskHandle = osThreadCreate(osThread(debugTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
#else
MX_LWIP_Init();
while (1) {
MX_LWIP_Process();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
#endif
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 5;
RCC_OscInitStruct.PLL.PLLN = 96;
RCC_OscInitStruct.PLL.PLLP = 1;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief FDCAN1 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN1_Init(void)
{
/* USER CODE BEGIN FDCAN1_Init 0 */
/* USER CODE END FDCAN1_Init 0 */
/* USER CODE BEGIN FDCAN1_Init 1 */
/* USER CODE END FDCAN1_Init 1 */
hfdcan1.Instance = FDCAN1;
hfdcan1.Init.FrameFormat = FDCAN_FRAME_FD_BRS;
hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan1.Init.AutoRetransmission = DISABLE;
hfdcan1.Init.TransmitPause = DISABLE;
hfdcan1.Init.ProtocolException = DISABLE;
hfdcan1.Init.NominalPrescaler = 6;
hfdcan1.Init.NominalSyncJumpWidth = 4;
hfdcan1.Init.NominalTimeSeg1 = 29;
hfdcan1.Init.NominalTimeSeg2 = 10;
hfdcan1.Init.DataPrescaler = 4;
hfdcan1.Init.DataSyncJumpWidth = 4;
hfdcan1.Init.DataTimeSeg1 = 11;
hfdcan1.Init.DataTimeSeg2 = 3;
hfdcan1.Init.MessageRAMOffset = 0;
hfdcan1.Init.StdFiltersNbr = 0;
hfdcan1.Init.ExtFiltersNbr = 0;
hfdcan1.Init.RxFifo0ElmtsNbr = 8;
hfdcan1.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan1.Init.RxFifo1ElmtsNbr = 0;
hfdcan1.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan1.Init.RxBuffersNbr = 0;
hfdcan1.Init.RxBufferSize = FDCAN_DATA_BYTES_64;
hfdcan1.Init.TxEventsNbr = 8;
hfdcan1.Init.TxBuffersNbr = 0;
hfdcan1.Init.TxFifoQueueElmtsNbr = 8;
hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
hfdcan1.Init.TxElmtSize = FDCAN_DATA_BYTES_64;
if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN FDCAN1_Init 2 */
/* USER CODE END FDCAN1_Init 2 */
}
/**
* @brief FDCAN2 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN2_Init(void)
{
/* USER CODE BEGIN FDCAN2_Init 0 */
/* USER CODE END FDCAN2_Init 0 */
/* USER CODE BEGIN FDCAN2_Init 1 */
/* USER CODE END FDCAN2_Init 1 */
hfdcan2.Instance = FDCAN2;
hfdcan2.Init.FrameFormat = FDCAN_FRAME_FD_BRS;
hfdcan2.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan2.Init.AutoRetransmission = DISABLE;
hfdcan2.Init.TransmitPause = DISABLE;
hfdcan2.Init.ProtocolException = DISABLE;
hfdcan2.Init.NominalPrescaler = 6;
hfdcan2.Init.NominalSyncJumpWidth = 4;
hfdcan2.Init.NominalTimeSeg1 = 29;
hfdcan2.Init.NominalTimeSeg2 = 10;
hfdcan2.Init.DataPrescaler = 4;
hfdcan2.Init.DataSyncJumpWidth = 4;
hfdcan2.Init.DataTimeSeg1 = 11;
hfdcan2.Init.DataTimeSeg2 = 3;
hfdcan2.Init.MessageRAMOffset = 512;
hfdcan2.Init.StdFiltersNbr = 0;
hfdcan2.Init.ExtFiltersNbr = 0;
hfdcan2.Init.RxFifo0ElmtsNbr = 8;
hfdcan2.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan2.Init.RxFifo1ElmtsNbr = 0;
hfdcan2.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan2.Init.RxBuffersNbr = 0;
hfdcan2.Init.RxBufferSize = FDCAN_DATA_BYTES_64;
hfdcan2.Init.TxEventsNbr = 8;
hfdcan2.Init.TxBuffersNbr = 0;
hfdcan2.Init.TxFifoQueueElmtsNbr = 8;
hfdcan2.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
hfdcan2.Init.TxElmtSize = FDCAN_DATA_BYTES_64;
if (HAL_FDCAN_Init(&hfdcan2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN FDCAN2_Init 2 */
/* USER CODE END FDCAN2_Init 2 */
}
/**
* @brief FDCAN3 Initialization Function
* @param None
* @retval None
*/
static void MX_FDCAN3_Init(void)
{
/* USER CODE BEGIN FDCAN3_Init 0 */
/* USER CODE END FDCAN3_Init 0 */
/* USER CODE BEGIN FDCAN3_Init 1 */
/* USER CODE END FDCAN3_Init 1 */
hfdcan3.Instance = FDCAN3;
hfdcan3.Init.FrameFormat = FDCAN_FRAME_FD_BRS;
hfdcan3.Init.Mode = FDCAN_MODE_NORMAL;
hfdcan3.Init.AutoRetransmission = DISABLE;
hfdcan3.Init.TransmitPause = DISABLE;
hfdcan3.Init.ProtocolException = DISABLE;
hfdcan3.Init.NominalPrescaler = 6;
hfdcan3.Init.NominalSyncJumpWidth = 4;
hfdcan3.Init.NominalTimeSeg1 = 29;
hfdcan3.Init.NominalTimeSeg2 = 10;
hfdcan3.Init.DataPrescaler = 4;
hfdcan3.Init.DataSyncJumpWidth = 4;
hfdcan3.Init.DataTimeSeg1 = 11;
hfdcan3.Init.DataTimeSeg2 = 3;
hfdcan3.Init.MessageRAMOffset = 1024;
hfdcan3.Init.StdFiltersNbr = 0;
hfdcan3.Init.ExtFiltersNbr = 0;
hfdcan3.Init.RxFifo0ElmtsNbr = 8;
hfdcan3.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan3.Init.RxFifo1ElmtsNbr = 0;
hfdcan3.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_64;
hfdcan3.Init.RxBuffersNbr = 0;
hfdcan3.Init.RxBufferSize = FDCAN_DATA_BYTES_64;
hfdcan3.Init.TxEventsNbr = 8;
hfdcan3.Init.TxBuffersNbr = 0;
hfdcan3.Init.TxFifoQueueElmtsNbr = 8;
hfdcan3.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
hfdcan3.Init.TxElmtSize = FDCAN_DATA_BYTES_64;
if (HAL_FDCAN_Init(&hfdcan3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN FDCAN3_Init 2 */
/* USER CODE END FDCAN3_Init 2 */
}
/**
* @brief SDMMC1 Initialization Function
* @param None
* @retval None
*/
static void MX_SDMMC1_SD_Init(void)
{
/* USER CODE BEGIN SDMMC1_Init 0 */
/* USER CODE END SDMMC1_Init 0 */
/* USER CODE BEGIN SDMMC1_Init 1 */
/* USER CODE END SDMMC1_Init 1 */
hsd1.Instance = SDMMC1;
hsd1.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
hsd1.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
hsd1.Init.BusWide = SDMMC_BUS_WIDE_4B;
hsd1.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_ENABLE;
hsd1.Init.ClockDiv = 1;
/* USER CODE BEGIN SDMMC1_Init 2 */
/* USER CODE END SDMMC1_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 119;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief UART4 Initialization Function
* @param None
* @retval None
*/
static void MX_UART4_Init(void)
{
/* USER CODE BEGIN UART4_Init 0 */
/* USER CODE END UART4_Init 0 */
/* USER CODE BEGIN UART4_Init 1 */
/* USER CODE END UART4_Init 1 */
huart4.Instance = UART4;
huart4.Init.BaudRate = 9600;
huart4.Init.WordLength = UART_WORDLENGTH_8B;
huart4.Init.StopBits = UART_STOPBITS_1;
huart4.Init.Parity = UART_PARITY_NONE;
huart4.Init.Mode = UART_MODE_TX_RX;
huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart4.Init.OverSampling = UART_OVERSAMPLING_16;
huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart4) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART4_Init 2 */
/* USER CODE END UART4_Init 2 */
}
/**
* @brief UART7 Initialization Function
* @param None
* @retval None
*/
static void MX_UART7_Init(void)
{
/* USER CODE BEGIN UART7_Init 0 */
/* USER CODE END UART7_Init 0 */
/* USER CODE BEGIN UART7_Init 1 */
/* USER CODE END UART7_Init 1 */
huart7.Instance = UART7;
huart7.Init.BaudRate = 115200;
huart7.Init.WordLength = UART_WORDLENGTH_8B;
huart7.Init.StopBits = UART_STOPBITS_1;
huart7.Init.Parity = UART_PARITY_NONE;
huart7.Init.Mode = UART_MODE_TX_RX;
huart7.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart7.Init.OverSampling = UART_OVERSAMPLING_16;
huart7.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart7.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart7.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart7) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart7, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart7, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart7) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART7_Init 2 */
/* USER CODE END UART7_Init 2 */
}
/**
* @brief UART8 Initialization Function
* @param None
* @retval None
*/
static void MX_UART8_Init(void)
{
/* USER CODE BEGIN UART8_Init 0 */
/* USER CODE END UART8_Init 0 */
/* USER CODE BEGIN UART8_Init 1 */
/* USER CODE END UART8_Init 1 */
huart8.Instance = UART8;
huart8.Init.BaudRate = 115200;
huart8.Init.WordLength = UART_WORDLENGTH_8B;
huart8.Init.StopBits = UART_STOPBITS_1;
huart8.Init.Parity = UART_PARITY_NONE;
huart8.Init.Mode = UART_MODE_TX_RX;
huart8.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart8.Init.OverSampling = UART_OVERSAMPLING_16;
huart8.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart8.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart8.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart8, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart8, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart8) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART8_Init 2 */
/* USER CODE END UART8_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);
}
/**
* Enable MDMA controller clock
* Configure MDMA for global transfers
* hmdma_mdma_channel0_sdmmc1_end_data_0
*/
static void MX_MDMA_Init(void)
{
/* MDMA controller clock enable */
__HAL_RCC_MDMA_CLK_ENABLE();
/* Local variables */
/* Configure MDMA channel MDMA_Channel0 */
/* Configure MDMA request hmdma_mdma_channel0_sdmmc1_end_data_0 on MDMA_Channel0 */
hmdma_mdma_channel0_sdmmc1_end_data_0.Instance = MDMA_Channel0;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.Request = MDMA_REQUEST_SDMMC1_END_DATA;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.TransferTriggerMode = MDMA_BUFFER_TRANSFER;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.Priority = MDMA_PRIORITY_LOW;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.Endianness = MDMA_LITTLE_ENDIANNESS_PRESERVE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.SourceInc = MDMA_SRC_INC_BYTE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.DestinationInc = MDMA_DEST_INC_BYTE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.SourceDataSize = MDMA_SRC_DATASIZE_BYTE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.DestDataSize = MDMA_DEST_DATASIZE_BYTE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.DataAlignment = MDMA_DATAALIGN_PACKENABLE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.BufferTransferLength = 1;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.SourceBurst = MDMA_SOURCE_BURST_SINGLE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.DestBurst = MDMA_DEST_BURST_SINGLE;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.SourceBlockAddressOffset = 0;
hmdma_mdma_channel0_sdmmc1_end_data_0.Init.DestBlockAddressOffset = 0;
if (HAL_MDMA_Init(&hmdma_mdma_channel0_sdmmc1_end_data_0) != HAL_OK)
{
Error_Handler();
}
/* Configure post request address and data masks */
if (HAL_MDMA_ConfigPostRequestMask(&hmdma_mdma_channel0_sdmmc1_end_data_0, 0, 0) != HAL_OK)
{
Error_Handler();
}
/* MDMA interrupt initialization */
/* MDMA_IRQn interrupt configuration */
HAL_NVIC_SetPriority(MDMA_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(MDMA_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(mLED_GPIO_Port, mLED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, SD_LED_Pin|VIN_ON_Pin|PICO_EN_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : mLED_Pin */
GPIO_InitStruct.Pin = mLED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(mLED_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : SD_LED_Pin VIN_ON_Pin PICO_EN_Pin */
GPIO_InitStruct.Pin = SD_LED_Pin|VIN_ON_Pin|PICO_EN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : sdDetect_Pin */
GPIO_InitStruct.Pin = sdDetect_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(sdDetect_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : VIN_IG_Pin VIN_1_4_Pin */
GPIO_InitStruct.Pin = VIN_IG_Pin|VIN_1_4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
void lwftp_init(void) {
IP4_ADDR(&s.cli_ip, CLI_IP[0], CLI_IP[1], CLI_IP[2], CLI_IP[3]);
IP4_ADDR(&s.svr_ip, SVR_IP[0], SVR_IP[1], SVR_IP[2], SVR_IP[3]);
s.svr_port = SVR_PORT;
s.user = USER;
s.pass = PASS;
printf("\n>> lwftp: cli ip: %d.%d.%d.%d\r\n", CLI_IP[0], CLI_IP[1], CLI_IP[2], CLI_IP[3]);
printf(">> lwftp: svr ip: %d.%d.%d.%d\r\n", SVR_IP[0], SVR_IP[1], SVR_IP[2], SVR_IP[3]);
printf(">> lwftp: svr port: %d\r\n", s.svr_port);
printf(">> lwftp: username: %s\r\n", s.user);
printf(">> lwftp: password: %s\r\n\n", s.pass);
#if FTPSemaphore
sys_sem_new(&ftpsem, 0); // the semaphore would prevent simultaneous access to lwftp_send
#endif
/* Thread for Control connection*/
sys_thread_new("lwftp_ctrl_thread", lwftp_ctrl_thread, (void*) &s,
DEFAULT_THREAD_STACKSIZE, osPriorityNormal);
/* Thread for Data connection*/
sys_thread_new("lwftp_data_thread", lwftp_data_thread, (void*) &s,
DEFAULT_THREAD_STACKSIZE, osPriorityNormal);
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* init code for LWIP */
MX_LWIP_Init();
/* USER CODE BEGIN 5 */
printf("[INFO] Remaining stack size of task: %ld\r\n",
uxTaskGetStackHighWaterMark(NULL));
lwftp_init();
osDelay(5000); // run code aft 5s
err_t err;
// err = lwftp_list(&s);
// err = lwftp_store(&s, "foobar.txt", "TESTTESTTESTTESTTESTTESTTEST\r\n");
err = lwftp_retrieve(&s, "ftp_test_1.txt");
printf("%d\r\n",err);
/* Infinite loop */
for (;;) {
osDelay(1);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_StartDebugTask */
/**
* @brief Function implementing the debugTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDebugTask */
void StartDebugTask(void const * argument)
{
/* USER CODE BEGIN StartDebugTask */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END StartDebugTask */
}
/* MPU Configuration */
void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct = {0};
/* Disables the MPU */
HAL_MPU_Disable();
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.BaseAddress = 0x0;
MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
MPU_InitStruct.SubRegionDisable = 0x87;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.BaseAddress = 0x30000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_32KB;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.Size = MPU_REGION_SIZE_512B;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/** Initializes and configures the Region and the memory to be protected
*/
MPU_InitStruct.Number = MPU_REGION_NUMBER3;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_128KB;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enables the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1) {
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */